Robust Active Damping Design for Grid Current Feedback Control in Grid-connected Converters

Zhen Xin, PhD Department of Energy Technology zxi@et.aau.dk

AALBORG UNIVERSITY

Background

Robust Active Damping Design of the Grid-Current Control System

Highly Accurate Derivatives for Capacitor-Voltage Active Damping

Background

HARMONY SYMPOSIUM - ZHEN XIN 3

Open-loop Transfer function of the Single-loop CCF and GCF:

 $T_{i1}(s) = G_{c}(s)G_{d}(s)G_{i1}(s) \qquad T_{i2}(s) = G_{c}(s)G_{d}(s)G_{i2}(s)$

Stability Characteristic of the GCF and CCF

HAREO

Single-loop CCF control

Single-loop GCF control

LCL-FILTER RESONANCE FREQUENCIES

Capacitor	C ₁ = 25 uF	C ₂ = 11 uF	C ₃ = 5 uF	C ₄ = 2 uF
Resonance frequency	f _{r1} = 0.95 kHz	f _{r2} = 1.43 kHz	f _{r3} = 2.12 kHz	f _{r4} = 3.36 kHz

AALBORG UNIVERSITET

100

Magnitude (dB)

-200

(ba) -90 -180 -270 -270

-360

-450

10

Dual-loop GCF control

Stability Characteristics of the Dual-loop GCF Control^[1]

[1] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter," *IEEE Trans. Power Electron.*, vol. 29, no. 7, pp. 3414–3427, Jul. 2014.

Capacitor Current Feedback AD

Signal Flow Graph Method

The single loop CCF becomes the dual-loop GCF!

HARMONY SYMPOSIUM - ZHEN XIN 8

Capacitor Current Feedback AD

Without time delay

AALBORG UNIVERSITET

How to enhance the stability of the dual-loop GCF?

10⁴

Capacitor Current Feedback AD

Experimental results:

Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, "Robust active damping design for grid-current feedback control in grid-connected converters," *IEEE Trans. Power Electron.*, To be published.

Background

HARMONY SYMPOSIUM - ZHEN XIN 12

□ Capacitor Current ---- Difficult to extract perfectly due to the influence of switching-frequency harmonics

Cost---- Additional current sensors for sensing capacitor current

Price: £14.39 £14.85

Price: £10.85 £12.80

AALBORG UNIVERSITET

Direct Digital Differentiation

Method	Tustin	Forward Euler	Backward Euler
Rule	$s=\frac{2}{T_s}\frac{z-1}{z+1}$	$s=\frac{z-1}{T_s}$	$s=\frac{z-1}{zT_s}$

Indirect Digital Differentiation

Method	High-Pass Filter	Lead-Lag Function
Rule	$\frac{\omega_{HP}s}{s+\omega_{HP}}$	$\omega_{max}\frac{s+k_f\omega_{HP}}{k_fs+\omega_{max}}$

Z. Xin, P. C. Loh, X. Wang, F. Blaabjerg, and Y. Tang, "Highly Accurate Derivatives for LCL-Filtered Grid Converter With Capacitor Voltage Active Damping," *IEEE Trans. Power Electron.*, 2015, DOI: <u>10.1109/TPEL.2015.2467313</u>.

Recommended Solutions

Differentiation with : Nonideal Generalized Integrator (GI) and Second-Order Generalized Integrator (SOGI)

Question

-- How can they differentiate?

HARMONY SYMPOSIUM - ZHEN XIN 16

Non-ideal Generalized Integrator

$$GI(s) = \frac{\omega''^2 s}{s^2 + \omega''^2}$$

$$GI'(s) = \frac{\omega''^2 s}{s^2 + \omega_c s + \omega''^2}$$

Non-ideal Generalized Integrator

Discretization

Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, "Realization of Digital Differentiator Using Generalized Integrator for Power Converters," *IEEE Trans. Power Electron.*, 2015, 10.1109/TPEL.2015.2442414.

Second Order Generalized Integrator

How can "SOGI" differentiate?

AALBORG UNIVERSITET

 10^{3}

Usage 1: frequency-adaptive differentiator

Need additional frequency detection algorithm or grid inductance estimation algorithm to obtain the required frequency

□ Can also be used where resonance frequency does not vary greatly.

Usage 2: frequency-fixed differentiator

Second Order Generalized Integrator

Experimental Results

Thank You! Questions?

" THE HIDDEN HARMONY IS BETTER THAN THE OBVIOUS "

- P. PICASSO

www.harmony.et.aau.dk