D-Σ Digital Control for Improving Stability Margin under High Line Impedance

Tsai-Fu Wu

Professor, National Tsing Hua University, Taiwan Elegant Power Electronics Applied Research Laboratory (EPEARL)

Aug. 26, 2015

Elegant Power Electronics Applied Research Laboratory (EPEARL)

D-Σ Digital Control

- > Major Characteristics
- 1) No need of frame transformation (for three-phase systems), the D- Σ digital control determining control laws directly.
- 2) Unlike predictive control, the D- Σ digital control using all of the information known *a priori*.
- 3) Similar to deadbeat control, the D- Σ digital control determining control law directly without modulation.
- 4) Unlike deadbeat control, the D-Σ digital control having a controller to cover wide filter inductance, dc-bus voltage and switching frequency variations.
- 5) Like fuzzy control, the D- Σ digital control being named based on the processes of control-law derivation.

> Unique Features

- 1) Direct digital control -- link error to control directly.
- 2) Current source achieve high stability margin.
- 3) $G_C \bullet G_P = I$ cancel parameter variation effects.
- 4) Wide bandwidth up to switching frequency.

Single-Phase Bi-directional Inverter

D- Σ digital control

- Cover wide inductancevariation and grid voltagedistortion.
- Shape grid-current sinusoidally.

• Achieve wide BW
$$(=f_s)$$
.

Circuit diagram of a single-phase bi-directional inverter with LCL filter and its control blocks.

> Derivation of Control Laws

A. Grid-Connection Mode

Two buck converters operated in +tive and -tive half line cycles, respectively.

B. Rectification Mode

Two boost converters operated in +tive and -tive half line cycles, respectively.

D-Σ Approach (Grid –Connection Mode)

Division (D) of Switching Period:

> Specifications

SYSTEM PARAMETERS OF THE EXPERIMENT SET-UP

Parameters	Symbols	Values		
DC-bus voltage	V _{DC}	360 ~ 400 V		
AC output voltage	V _N	220 V _{rms}		
Maximum rated power	P _{max}	5 kW		
Line frequency	f_{l}	60 Hz		
Inverter inductors	L _s	3 mH ~ 650 μH		
Filter capacitor	C _s	5 μF		
Power switch	IGBT IRG4PC50SPbF	$V_{CE(on) \text{ typ.}} = 1.28 \text{ V}, \text{ V}_{CES}$ = 600V, and $I_{C(TC = 25^{\circ}C)} = 70 \text{ A}$		
Power diode (silicon carbide)	CREE C3D20060D	$V_{F(TJ=25^{\circ}C) \text{ typ.}} = 1.5 \text{ V}$ Zero-Recovery Time		
Switching frequency	f_s	20 kHz		

> Experimental Results (GC mode) (V_g with harmonics)

✓ *Case I:* (V_{THD} : 18.5%)

Harmonic order	%
5	9.8
7	15.8
8	2.16

Experimental Results (Rectification mode) (V_g with harmonics)

<i>Case IV:</i> (V _{THD} : 4.9%)	Harmonic order	%	Harmonic order	%
	7	4.6	21	0.9
	9	1	39	07

Conclusions

Four test conditions of grid distortion

	Case	Harmonic order	%	Measured Item	Without FCCC (GC Mode)	With FCCC (GC Mode)	Without FCCC (Rect. Mode)	With FCCC (Rect. Mode)
	Case I	5	9.8	PF	0.95	0.98	0.95	0.97
		7	15.8	V _{THD} (%)	18.5	18.4	18.4	18.4
		8	2.16	I _{THD} (%)	18.8	3.2	18.7	2.8
		3	4.9	PF	0.98	0.99	0.98	0.99
	Case II 5 11 15	5	1.6	11	0.90	0.99	0.90	0.77
		7	2.7	V _{THD} (%)	6.4	6.4	6.4	6.4
		11	1.4					
		15	2	T (0/)	0.4	2.0	0.2	2.2
		17	1.1	T _{THD} (/0)	9.4	3.8	9.5	5.5
	Case III 3			PF	0.95	0.98	0.96	0.97
		3	17.8	V _{THD} (%)	17.8	17.7	17.7	17.8
				I _{THD} (%)	17.7	2.1	17.8	2.0
		7	4.6	PF	0.97	0.98	0.97	0.98
	Case IV 9 21	1		1.0	£ 1	1.0	5.0	
		21	0.9	v _{THD} (∛₀)	4.9	3.1	4.9	5.0
		39	0.7	I _{THD} (%)	5.1	2.5	5.1	2.6
	1			r	r		,,	41

- 1) With D- Σ digital control, the controller can tune loop gains corresponding to inductance variation cycle by cycle.
- 2) D- Σ digital control can cover wide inductance, dc-bus voltage and line voltage variations, and achieve precise inverter current tracking.
- 3) With the filter capacitor-current compensation, the grid current can be shaped sinusoidally under distorted grid voltage.
- 4) D- Σ digital control can improve stability margin, close to 90°, when injecting current to the grid under high line impedance.

