
Elegant Power Electronics Applied Research Laboratory (EPEARL)

D-Σ Digital Control for Improving 
Stability Margin under High Line Impedance

Tsai-Fu Wu

Professor, National Tsing Hua University, Taiwan
Elegant Power Electronics Applied Research Laboratory (EPEARL)

Aug. 26, 2015



Elegant Power Electronics Applied Research Laboratory (EPEARL) 1

Outline

＃Introduction
＃D-Σ Digital Control
＃Filter-Capacitor Current Compensation
＃Stability Analysis 
＃Experimental Results
＃Conclusions



Elegant Power Electronics Applied Research Laboratory (EPEARL) 2

MPPT

Booster

Charger/
Discharger

DC
Products

Bi‐directional
Inverter

EMS

Fuel Cell

Battery

# Introduction
 Harmonized AC and DC Microgrid
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• 3Φ4W Inverter (= 3 x 1 Φ 2W Inverters)
 Bi-directional Inverter
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• 1Φ2W Inverter
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 SPWM and Bi-Polar Operation
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# D-Σ Digital Control
 Major Characteristics
1) No need of frame transformation (for three-phase systems), 

the D-Σ digital control determining control laws directly.

2) Unlike predictive control, the D-Σ digital control using all of 
the information known a priori.

3) Similar to deadbeat control, the D-Σ digital control 
determining control law directly without modulation.

4) Unlike deadbeat control, the D-Σ digital control having a 
controller to cover wide filter inductance, dc-bus voltage 
and switching frequency variations.

5) Like fuzzy control, the D-Σ digital control being named 
based on the processes of control-law derivation.
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 Unique Features

1) Direct digital control -- link error to control 
directly.

2) Current source – achieve high stability margin.

3) GCGP=I – cancel parameter variation effects.

4) Wide bandwidth – up to switching frequency.



Elegant Power Electronics Applied Research Laboratory (EPEARL) 9

Circuit diagram of a single-phase bi-directional inverter 
with LCL filter and its control blocks.

 D-Σ digital control
 Cover wide inductance 

variation and grid voltage 
distortion.

 Shape grid-current 
sinusoidally. 

 Achieve wide BW (= fs).

 Single-Phase Bi-directional Inverter
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A. Grid-Connection Mode
Two buck converters operated in +tive and –tive half line cycles, respectively.

Division (D) of Switching Period:
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D- Σ Approach (Grid –Connection Mode)

Control law for grid-connection mode:
Control law for rectification mode:

 Derivation of Control Laws

Summation: Σ

B. Rectification Mode
Two boost converters operated in +tive and -tive half line cycles, respectively.
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LC filter network at the inverter output side.
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# LC or LCL Filter
•Ripple Current

LCL Filter
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LCL filter network at the inverter output side.
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control block diagram of the proposed filter-capacitor 
current compensation and based on D-Σ digital control

# Stability Analysis
 s-domain model

Equivalent circuit of the controlled current-source 
inverter connected to the grid with grid impedance Zl.

0
P

g

VZ
i






Elegant Power Electronics Applied Research Laboratory (EPEARL) 14

Parameters Symbols Values
DC‐bus voltage vDC 360 ~ 400 V

AC output voltage vN 220 Vrms
Maximum rated power Pmax 5 kW

Line frequency fl 60 Hz
Inverter inductors Ls 3 mH ~ 650 μH
Filter capacitor Cs 5 μF

Power switch IGBT IRG4PC50SPbF
VCE(on) typ. = 1.28 V, VCES 

= 600V, and
IC(TC =25°C ) = 70 A

Power diode

(silicon carbide)
CREE C3D20060D VF(TJ=25°C) typ. = 1.5 V

Zero‐Recovery Time
Switching frequency fs 20 kHz

 Specifications

SYSTEM PARAMETERS OF THE EXPERIMENT SET-UP
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Photograph of the designed single-phase bi-directional inverter system

 Prototype
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(iL and ig: 20A/div; vg and vdc: 100v/div; time: 10ms/div)

Rectification mode (5 kW)GC mode (5 kW)
Rectification modeGC mode

 Experimental Results (Vg with no harmonics)
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Without considering inductance variation Considering inductance variation

1500 450 HiL H   

 100     30 % ~ %
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Harmonic order %
5 9.8 
7 15.8
8 2.16

Without  FCCC With FCCCITHD: 18.8% ITHD: 3.2%

 Case I: (VTHD : 18.5% )  

(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

 Experimental Results (GC mode) (Vg with harmonics)
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

Harmonic order % Harmonic order %

3 4.9 11 1.4
5 1.6 15 2
7 2.7 17 1.1

ITHD: 9.4% ITHD: 3.8%

 Case II: (VTHD : 6.4% )

Without  FCCC With FCCC
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

ITHD: 17.7% ITHD : 2.1%

 Case III: (VTHD : 17.8% )

Without  FCCC With FCCC

Harmonic order %
3 17.8 
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

With FCCC

ITHD: 5.1% ITHD : 2.5%

Harmonic order % Harmonic order %
7 4.6 21 0.9
9 1 39 0.7

 Case IV: (VTHD : 4.9% )

Without  FCCC With FCCC
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

 Experimental Results (Rectification mode) (Vg with harmonics)

 Case I: (VTHD : 18.4% )  Harmonic order %
5 9.8 
7 15.8
8 2.16

Without  FCCC With FCCCITHD: 18.7% ITHD: 2.8%
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

 Case II: (VTHD : 16.4% )  Harmonic order % Harmonic order %

3 4.9 11 1.4
5 1.6 15 2
7 2.7 17 1.1

Without  FCCC With FCCCITHD: 9.3% ITHD: 3.3%
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

ITHD: 17.8% ITHD : 2.0%Without  FCCC With FCCC

 Case III: (VTHD : 17.7% )  Harmonic order %
3 17.8 
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(iL and ig: 10A/div; vg and vdc: 100v/div; time: 10ms/div)

With FCCC

ITHD: 5.0% ITHD : 2.6%

Harmonic order % Harmonic order %
7 4.6 21 0.9
9 1 39 0.7

 Case IV: (VTHD : 4.9% )

Without  FCCC With FCCC
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10 A                            20 A

(iL and ig: 20A/div; vg and vdc: 100v/div; time: 10ms/div)

(a) with low-THD vg (b) with high-THD vg

 Experimental Results (step current change)
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Four test conditions of grid distortion
# Conclusions

Case Harmonic 
order % Measured 

Item
Without 
FCCC

(GC Mode)
With FCCC
(GC Mode)

Without 
FCCC

(Rect. Mode)
With FCCC

(Rect. Mode)

Case I

5 9.8 PF 0.95 0.98 0.95 0.97

7 15.8 VTHD(%) 18.5 18.4 18.4 18.4

8 2.16 ITHD(%) 18.8 3.2 18.7 2.8

Case II

3 4.9
PF 0.98 0.99 0.98 0.99

5 1.6
7 2.7

VTHD(%) 6.4 6.4 6.4 6.411 1.4
15 2

ITHD(%) 9.4 3.8 9.3 3.3
17 1.1

Case III 3 17.8

PF 0.95 0.98 0.96 0.97

VTHD(%) 17.8 17.7 17.7 17.8

ITHD(%) 17.7 2.1 17.8 2.0

Case IV

7 4.6 PF 0.97 0.98 0.97 0.98
9 1

VTHD(%) 4.9 5.1 4.9 5.0
21 0.9

ITHD(%) 5.1 2.5 5.1 2.639 0.7
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1) With D-Σ digital control, the controller can tune loop gains
corresponding to inductance variation cycle by cycle.

2) D-Σ digital control can cover wide inductance, dc-bus voltage
and line voltage variations, and achieve precise inverter
current tracking.

3) With the filter capacitor-current compensation, the grid
current can be shaped sinusoidally under distorted grid
voltage.

4) D-Σ digital control can improve stability margin, close to 90 °,
when injecting current to the grid under high line impedance.
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