High-Order Passive Filters for Grid-Connected Voltage-Source Converters: Topologies and Design Challenges

Remus Beres PhD Fellow Dept. of Energy Technology Aalborg University rnb@et.aau.dk

- Introduction
- Passive Filters Description
- Design Challenges
- Optimum Passive Damping Method
- Conclusions
- Questions

Introduction

- **Power Filters** are needed to link active converters with ideal power sources/loads
- A **high-order** filter is adopted usually due to size and cost considerations
- The aim is to **effectively** filter out the switching harmonics from the active converter and to ensure VSC operation

Typical Power Filters

• L filter: 20 dB/decade attenuation

• LC filter: 40 dB/decade attenuation

• LCL filter: 60 dB/decade attenuation

- \checkmark The key is to ensure high efficiency, low cost and size
- There should be no risk of harmonic amplification with the utility grid

Shunt passive damped filters topologies

the resonance and the high frequency ripple!*

*Beres et al., "Improved Passive Damped LCL Filter to Enhance Stability in Grid-Connected Voltage-Source Converters",

✓ "More effective" passive filter*

*Beres et al., "Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications", IEEE Transactions

Known challenges (physical design)

- Size optimized design/reduced filter cost result in low inductances (high capacitance) → high ripple current in the filter → increased power loss
- Loss optimized high-order filters results in **increased size** of the filter
- Accurate models to optimize the passive filter are not ready available

Additional challenges (system level)

- Attenuation of <u>resonance harmonics</u> or limitation of **instabilities risks**
- **Damping is more challenging** for size optimized filters due to increased capacitance
- Harmonics regulations not explicitly defined above 2 kHz (2-9 kHz specifications expected soon)

Power Loss in the VSC and Passive Filter

Results from literature

Reference	Frequency range	VSC loss	Filter loss	Core loss calculation method	Verified
[1]	2~6 kHz	0.8~1.5 %	0.1~0.2 %	iGSE	_
[2]	2~12 kHz	0.5~1 %	0.3~0.5 %	NSE	_
[3]	3~12 kHz	0.5~1.2 %	1.2~2.2 %	i ² GSE+loss map	yes

• ~80% of filter loss occurs in the **converter side** inductance!

[1] K. Park, F. Kieferndorf, U. Drofenik, S. Pettersson, and F. Canales, "Weight minimization of LCL filters for high power converters," in *2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)*, **2015**, pp. 142–149

[2] L. Wei, Y. Patel, R. Automation, A. Bradley, and W. E. Drive, "Evaluation of LCL Filter Inductor and Active Front End Rectifier Losses Under Different PWM Method," pp. 3019–3026, **2013**

[3] J. Muhlethaler, M. Schweizer, R. Blattmann, J. W. Kolar, and A. Ecklebe, "Optimal Design of LCL Harmonic Filters for Three-Phase PFC Rectifiers," *IEEE Trans. Power Electron.*, vol. 28, no. 7, pp. 3114–3125, Jul. **2013**

Permeability dependence of the Fe-Si material simulated in time-domain

Example: 70% inductance decrease at rated current

\Box Ferrite + Laminated sheets (H₀=0)

Core loss of Fe-Si 10 times higher in laminated sheets!

□ Inductor loss characterization:

DC-bias influence at 10 kHz and $\Delta B=0.09T$ for powder materials

- · Core loss is not always increasing with dc bias!
- Combination of the core loss information and PWM modulation can result in more significant optimization of power loss in the filter!

Table I: Individual current harmonic limits at PCC

* the limits are referred to the low voltage side of the step-up transformer (400 V)

Harmonic order <i>h</i>	VDE-AR-N 4105 (LV)	BDEW (MV)*	IEEE 519 (LV & MV)
5	2.08	2.06	4
7	1.39	2.84	4
11	0.69	1.8	2
13	0.55	1.32	2
17	0.42	0.76	1.5
19	0.35	0.62	1.5
23	0.28	0.42	0.6
25	0.21	0.35	(23≤h<35)
25 < h < 40	5.2/h	8.67/h	0.3
40 < h < 180	6.24/h	6.24/h	(35≤h<50)

Current Harmonic Limits

- High difference between different harmonic regulations!
- Presence of low harmonics in the grid current needs compensation!
- Lack of damping can result in harmonics limits exceeded around the resonance!
- Alternative passive damping methods are needed to ensure low damping loss!

✓ Optimum Damping Parameters

- Damping resistor used to "limit" resonance • instabilities in the utility grid. Low or high values of the resistor have equal impact.
- R.D. Middlebrook develop the "rules" for optimum damping design (1978)
- The damping parameters are dependent on the characteristic parameters of the filter and the ratio(s) between the reactive elements of the filter (capacitors or inductors)*

$$R_0, f_0 = f\left(L_{eq}, C_{eq}\right) \qquad a = \frac{L_d}{L_{eq}} \qquad n = \frac{C_d}{C_{eq}}$$

Resonance frequency can vary in a wide range!

*Beres et al., "Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications", IEEE Transactions on Power Electronics, Early Access, 2015

AALBORG UNIVERSITET

Damping current waveforms

AALBORG UNIVERSITET

Damping current waveforms

Half size!

IEEE 1547 regulations

- Passive damping loss are reasonable!
- Very high resonance attenuation requires RLC dampers to limit loss!

FFT *b*: [20 mA/div] [1.25 kHz/div]

BDEW regulations

• Design ratings are different depending on harmonic regulations, sensor position or damping topology

ONY

- Latest advancements in power filter topologies for grid connected VSC have been presented
- The optimal design of the filter is related mainly to choice of the converter side inductance as function of the VSC topology and VSC specifications
- The resonance damping and switching ripple attenuation can be ensured by shunt passive damped filters
- An optimum design of the passive damped filters was proposed which can ensure also low damping loss and size
- Further optimization can be performed by considering:
 - The grid impedance influence on damping and switching harmonics attenuation
 - Harmonization between the PWM method and loss in the converter side inductor

Thank You! Questions?

www.harmony.et.aau.dk