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Introduction

• Power Fi l ters are needed to l ink act ive conver ters wi th
ideal power sources/ loads

• A high-order f i l ter is adopted usual ly due to s ize and cost
considerat ions

• The aim is to effect ively f i l ter out the swi tch ing harmonics
f rom the act ive conver ter and to ensure VSC operat ion

Switching frequency harmonics Power filter

Converter current Grid current
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Passive Filters Description

Typical Power Fi l ters

• L f i l ter : 20 dB/decade at tenuat ion

• LC f i l ter :  40 dB/decade at tenuat ion

• LCL f i l ter : 60 dB/decade at tenuat ion

Cf

L1 L2

Output  current
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Passive Damped Filters Topologies

 The key is  to  ensure h igh eff ic iency,  low cost  and s ize

 There should be no r isk  of  harmonic  ampl i f icat ion wi th  the 

ut i l i ty  gr id

Shunt  pass ive damped f i l ters  topolog ies

C - t y p e f i l t e r  u s e d  t o  d a m p
t h e  r e s o n a n c e  a n d  t h e
h i g h  f r e q u e n c y  r i p p l e ! *

*Beres et al., “Improved Passive Damped LCL Filter to Enhance Stability in Grid-Connected Voltage-Source Converters”, 

Proceedings of CIRED, 2015
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Passive Damped Filters Topologies

 “More effect ive” passive f i l ter*

Filter
Passive
Device

Peak Rating L/C/R
LI2

(HA2)
Volume
(cm3)

LCL + RC

L1 23 A 1.5 mH 

1.06

513 
L2 21 A 0.7 mH 200

Cd, Ct 330 V 4.7 µF 22.7 
Rd 17 W 17 Ω -

Trap + RC

L1 23 A 1.5 mH

0.89

513 
L2 21 A 0.3 mH 100 

Cd, Ct 330 V 4.7 µF 22.7 
Lt 3 A 0.05 mH 7.6
Rd 14 W 13 Ω -

2traps + 
RC

L1 25 A 0.8 mH

0.59

200 
L2 21 A 0.2 mH 100 

Cd, Ct 330 V 4.7 µF 22.7 
Lt 5 A 0.05 mH 7.6
Ct2 330 V 0.44 3.65 
Lt2 2.5 A 0.14 mH 7.6 
Rd 17 W 7.7 Ω -

Hal f  
physica l  
vo lume!

*Beres et al., “Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications ”, IEEE Transactions 

on Power Electronics, Early Access, 2015

31Total

Total

L
C



27Total

Total

L
C



8.5Total

Total

L
C



6



Design Challenges of Passive Filters

Known challenges (physical design)

• Size optimized design/reduced filter cost result in low inductances (high

capacitance) high ripple current in the filter increased power loss

• Loss optimized high-order filters results in increased size of the filter
• Accurate models to optimize the passive filter are not ready available

Additional challenges (system level)

• Attenuation of resonance harmonics or limitation of instabilities risks
• Damping is more challenging for size optimized filters due to increased

capacitance
• Harmonics regulations not explicitly defined above 2 kHz (2-9 kHz

specifications expected soon)
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Design Challenges of Passive Filters

Power Loss in the VSC and Passive Fi l ter

Results from literature

• ~80% of filter loss occurs in the converter side inductance!

[1] K. Park, F. Kieferndorf, U. Drofenik, S. Pettersson, and F. Canales, “Weight minimization of LCL filters for high 
power converters,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 
2015, pp. 142–149
[2] L. Wei, Y. Patel, R. Automation, A. Bradley, and W. E. Drive, “Evaluation of LCL Filter Inductor and Active Front 
End Rectifier Losses Under Different PWM Method,” pp. 3019–3026, 2013
[3] J. Muhlethaler, M. Schweizer, R. Blattmann, J. W. Kolar, and A. Ecklebe, “Optimal Design of LCL Harmonic 
Filters for Three-Phase PFC Rectifiers,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3114–3125, Jul. 2013

Reference Frequency 
range VSC loss Filter loss Core  loss calculation 

method Verified

[1] 2~6 kHz 0.8~1.5 % 0.1~0.2 % iGSE –

[2] 2~12 kHz 0.5~1 % 0.3~0.5 % NSE –

[3] 3~12 kHz 0.5~1.2 % 1.2~2.2 % i2GSE+loss map yes
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Power Loss in the Converter Side Inductance

single phase vs three phase

• For a mi of 0.95, the maximum minor loop frequency is 20 fsw!

Permeability dependence of the Fe-Si material simulated in time-domain

Example: 70% inductance decrease at rated current
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Power Loss in the Converter Side Inductance

 Ferr i te  +  Laminated sheets  (H 0=0)
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Core loss of  Fe-Si  10 t imes h igher  in  laminated sheets !

 Powder  mater ia l  (H 0=0)
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Power Loss in the Converter Side Inductance

 Inductor  loss  character izat ion:

DC-b ias  in f luence  a t  10 kHz and ∆B=0.09T fo r  powder  mater ia ls
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• Core loss is  not  a lways increas ing wi th  dc b ias!  

• Combina t ion  o f  the  core  loss  in fo rmat ion  and  PWM modu la t ion  
can  resu l t  i n  more s igni f icant  opt imizat ion of  power  loss  in  
the  f i l te r !  
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Current Harmonic Limits

Harmonic order 
h

VDE-AR-N 
4105 (LV) BDEW (MV)* IEEE 519

(LV & MV)

5 2.08 2.06 4
7 1.39 2.84 4
11 0.69 1.8 2
13 0.55 1.32 2
17 0.42 0.76 1.5
19 0.35 0.62 1.5
23 0.28 0.42 0.6

(23≤h<35)25 0.21 0.35
25 < h < 40 5.2/h 8.67/h 0.3

(35≤h<50)40 < h < 180 6.24/h 6.24/h

Table I: Individual current harmonic limits at PCC
* the limits are referred to the low voltage side of the step-up transformer (400 V)
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Current Harmonic Limits

LCL filter design according to IEEE 1547 (series R damper)

• High difference between different harmonic regulations!

• Presence of low harmonics in the grid current needs compensation!

• Lack of damping can result in harmonics limits exceeded around the resonance!

• Alternative passive damping methods are needed to ensure low damping loss!

L1=7%, L2=3%, C=5%, Rd =0.13%, 
Pd=0.03%, Kp=8.5, Ki=450

L1=4%, L2=3%, C=10%,Rd =0.3%
Pd=0.4%, Kp=5, Ki=250

13



Optimum Passive Damping Method

 Optimum Damping Parameters

• Damping  res is to r  – used to  “ l im i t ”  resonance  

ins tab i l i t i es  in  the  u t i l i t y  g r id .  Low or  h igh  

va lues  o f  the  res is to r  have  equa l  impac t .

• R .D.  M idd lebrook deve lop  the  “ ru les ”  fo r  

op t imum damping  des ign  (1978)

• The damping  parameters  a re  dependent  on  

the  charac te r i s t i c  parameters  o f  the  f i l te r  and

the  ra t io (s )  be tween the  reac t i ve  e lements  o f

the  f i l t e r  (capac i to rs  o r  induc to rs ) *

d

eq

La
L

 d

eq

Cn
C

 0 0, ,eq eqR f f L C
Resonance frequency can 

vary in a wide range!

*Beres et al., “Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications ”, IEEE Transactions 

on Power Electronics, Early Access, 2015
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Optimum Passive Damping Method

Damping current waveforms
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Optimum Passive Damping Method

Half size!
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Damping current waveforms



Optimum Passive Damping Method

BDEW regulat ions

IEEE 1547 regulat ions

• Pass ive damping loss are reasonable!

• Very h igh resonance at tenuat ion requi res RLC dampers to  

l imi t  loss!   
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Optimum Passive Damping Method

BDEW regulat ions

IEEE 1547 regulat ions

• Design rat ings are d i f ferent  depending on harmonic  

regulat ions,  sensor  pos i t ion or  damping topology 
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Summary

• Latest advancements in power filter topologies for grid connected VSC 

have been presented 

• The optimal design of the filter is related mainly to choice of the converter 

side inductance as function of the VSC topology and VSC  specifications

• The resonance damping and switching ripple attenuation can be ensured

by shunt passive damped filters

• An optimum design of the passive damped filters was proposed which can

ensure also low damping loss and size

• Further optimization can be performed by considering:
• The grid impedance influence on damping and switching harmonics

attenuation
• Harmonization between the PWM method and loss in the converter side

inductor
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Thank You! Questions?


