HARMONY Symposium 2015 - Welcome & Overview

Frede Blaabjerg, Professor Department of Energy Technology fbl@et.aau.dk

AALBORG UNIVERSITY DENMARK

Aalborg University - Denmark

Aalborg University - Campus

FREDE BLAABJERG, AALBORG UNIVERSITY | 26.08.2015 | 3

Aalborg University - Campus

FREDE BLAABJERG, AALBORG UNIVERSITY | 26.08.2015 | 4

Department of Energy Technology

Energy production - distribution - consumption - control

Department of Energy Technology

HARMONY

Harmonic Identification, Mitigation, and Control in Power Electronics Based Power Systems

ERC Advanced Grant

Period: 01/02/2013 - 31/01/2018 Amount: 2.5 million Euros

Principle Investigator

Professor Frede Blaabjerg Department of Energy Technology Aalborg University, Denmark

Website

www.harmony.et.aau.dk

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Background

Power Electronics Enabling Sustainable and Smart Power Grids

Source: IKEA

FREDE BLAABJERG, AALBORG UNIVERSITY | 26.08.2015 | 8

Evolving Power Electronics Based Power Systems

AALBORG UNIVERSITET

Challenges

Increasing Wideband Harmonics and Dynamic Interactions

AALBORG UNIVERSITET

Challenges

Harmonic Coupling and Controller Interaction

- Nonlinear characteristic of passive components under square wave condition
- More resonances in converter-filters and cables
- Interactions of harmonic and inter-harmonic components

AALBORG UNIVERSITET

Research Vision

Harmonious Power System without unexpected harmonics and instabilities

Research Plan

AALBORG UNIVERSITET

Team Members

Key Members

Frede Blaabjerg (Principle Investigator)

Claus Leth Bak

Poh Chiang Loh

Xiongfei Wang

PhD Students

Remus Beres Changwoo Yoon

n Jun Bum Kwon

Zhen Xin

Haofeng Bai

Minghui Lu

Esmaeil Ebrah.

brah. Mohammadkazem B. D.

Modeling Power System Components

Wideband Model under Square Wave Conditions

Sinusoidal

Power Electronics

╒┨═╔═╒╒┇╗═╔┧╕ ╄╋╕╄╋┥
<u>╪╶╘╴</u> ╪╶╗╴┲╼╗╴┲╼╗╴┲╼╗╴┲
╒╕╕┍╻_╋╶╻╶╻╶╻
Square

Passive Filters

Transformers

Power Lines & Cables

Optimized Design of Passive Filters

Optimal Design for Stability and Power Loss

Modeling Defined Power Systems

Power Electronic Based Distribution Systems

- Working with IEEE Task Force on Harmonics Modeling and Simulation
- Integration of power electronic based sources and loads
 - 1. Distributed residential loads
 - 2. Integration of DG units
 - ✓ Photovolatic (PV)
 - ✓ Wind turbines (DFIG)
 - ✓ Vehicle to Grid (V2G)

Harmonic State-Space Analysis

Power Converters – Linear Time-Periodic (LTP) Systems

Harmonic State-Space (HSS) model for harmonic interaction analysis

N. Wereley, "Analysis and control of linear periodically time varying systems," Ph.D. dissertation, MIT, 1991.

Stability Analysis of Linear Time-Periodic System

Harmonic transfer functions (matrices)

 $H(s) = \hat{C} \left((s + jn\omega_1)I - \hat{A} \right)^{-1} \hat{B} + \hat{D}$

$$H(s) = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \dots & H_0(s - j\omega_1) & H_{-1}(s) & H_{-2}(s + j\omega_1) & \dots \\ \dots & H_1(s - j\omega_1) & H_0(s) & H_{-1}(s + j\omega_1) & \dots \\ \dots & H_2(s - j\omega_1) & H_1(s) & H_0(s + j\omega_1) & \dots \\ \ddots & \vdots & \vdots & \ddots \end{bmatrix}$$

Frequency-coupled responses of LTP model

On-Line Detection and Mitigation

Active Damper – Adaptively Reshaping Grid impedance

- Reduce electric coupling in paralleled VSCs at resonance frequency
- No low-order harmonic filtering low-power, high-frequency, high-bandwidth

Stability of AC Power-Electronic-Based System

- Voltage-controlled inverter: system voltage and frequency regulation
- Current-controlled inverter: unity power factor operation
- Harmonic instability due to current/voltage controller interactions of inverters

Stability of AC Power-Electronic-Based System

- Component Connection Method (CCM) state-space matrix and eigenvalues
 - ✓ Generalized to multi-bus power system
- Impedance-based analytical approach frequency-domain analysis
 - ✓ Balanced three-phase system SISO transfer functions
 - ✓ Generalized Nyquist stability criterion is required for MIMO systems

Programme - Morning

09:00 – 09:30 Welcome and Overview of Harmony Project - by Prof. Frede Blaabjerg, Principle Investigator, Aalborg University, Denmark

09:30 – 10:00 "D-Σ Digital Control for Improving Stability Margin under High Line Impedance" - by Prof. Tsai-Fu Wu, National Tsinghua University, Taiwan

10:00 – 10:30 "Harmonic Assessment in a Modern Transmission Network" - by Christian Flytkjaer Jensen, Grid Analyst, Energinet.dk, Denmark

10:30 – 11:00 Coffee Break

11:00 – 11:30 "Harmonic Challenges and Mitigation in Large Offshore Wind Power Plants" - *by Lukasz Kocewiak, Senior Power System Engineer, DONG Energy, Denmark*

11:30 – 12:00 "Harmonic Standards of the Present and the Future Electricity Networks" - by *Firuz Zare, Lead Engineer, Danfoss Drives, Denmark*

12:00 – 12:30 "Stability Analysis and Active Stabilization of DC Distribution Systems" - by Mehdi zadeh, PhD Student, NTNU, Norway

12:30 – 13:30 Lunch

Programme - Afternoon

13:30 – 13:50 "Harmonic Stability in Power Electronic Based Power Systems" - by Xiongfei Wang, Assistant Professor, Aalborg University, Denmark

13:50 – 14:10 "High-Order Passive Filters for Grid-Connected Voltage-Source Converters: Topologies and Design Challenges" - by Remus Beres, PhD Student, Aalborg University, Denmark

14:10 – 14:30 "Small Scale Harmonic Power System Stability"- by Changwoo Yoon, PhD Student, Aalborg University, Denmark

14:30 – 14:50 "Harmonic State Space Modeling in Power Electronics" - by Jun Bum Kwon, PhD Student, Aalborg University, Denmark

14:50 – 15:10 Coffee Break

15:10 – 15:30 "Active Damper for Stabilizing Power-Electronic Based Systems" - by Haofeng Bai, PhD Student, Aalborg University, Denmark

15:30 – 15:50 "Robust Active Damping Design for Grid-Current Feedback Control in Grid-Connected Converters" - by Zhen Xin, PhD Student, Aalborg University, Denmark

15:50 – 16:10 "A Multi-Pulse Pattern Modulation Scheme for Harmonic Mitigation in Three-Phase Multi-Motor Drives Applications" - by Pooya Davari, Postdoc, Aalborg University, Denmark

16:10 – 17:10 Panel Discussion and Lab Visit