Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

JunBum Kwon PhD Student Dept. of Energy Technology Aalborg University jbk@et.aau.dk

Problem statement & Motivation

- Time Varying Elements
- □ Harmonic State Space(HSS) Modeling
 - Introduction of Linear Time Periodically Varying (LTP) Theory
 - Modeling Procedure of 3 phase Grid Connected Converters
 - Harmonic Interaction analysis
- □ Simulation & Experimental Results
- **Conclusion & Future Work**

Background

Power electronics based power system (Example)

Simplified LV micro grid network (Cigre Benchmark)

• Power electronics technology is being widely used for power generation, generation and Bidirectional power flow is changing grid impedance continuously.

Problem Statement & Motivation (cont.)

□ Time Varying Components in Power Electronics Converters

Introduction of LTP Theory (in electrical systems)

[1] Frequency-Domain System Identification for linear time periodic systems with application to wind turbine dynamics and CSLDV, University of Wisconsin Madison, by Dr Matthew S. Allen

□ Introduction of LTP theory

Advantages of HSS

- Dynamics of each harmonics
- Coupling analysis of AC-DC system.
- Including time varying component
- Easy to be connected with other system matrix
- Possibility to figure out the characteristic, which can not be found in LTI model.

N. M. Wereley and S. R. Hall, "Frequency response of linear time periodic systems," in *Proceedings of the 29th IEEE Conference on Decision and Control, 1990.*, 1990, pp. 3650-3655 vol.6.

Harmonic State Space Modeling					
Modeling Procedure of 3 phase Grid Connected Converters					
LTI to LTP	$\dot{x}(t) = Ax(t) + Bu(t)$ (1) $\dot{x}(t) = A(t)x(t) + B(t)u(t)$ y(t) = Cx(t) + Du(t) $y(t) = C(t)x(t) + D(t)u(t)$	(2) (1)			
Time Varying Fourier Coefficient	$x(t) = \Gamma(t)X$	(3)			
	where, $\Gamma(t) = \left[e^{-jh\omega_0 t} \cdots e^{-j2\omega_0 t}, e^{-j\omega_0 t}, 1, e^{j\omega_0 t}, e^{j2\omega_0 t} \cdots e^{-j\omega_0 t} \right]_{X_0(t)} X_1(t) \cdots X_h(t) \right]_{X_0(t)}$,jhω ₀ t]			
Time Varying Fourier Coefficient	$\dot{x}(t) = \dot{\Gamma}(t)X + \Gamma(t)\dot{X}$	(4)			
	$sX(\omega, t) = A(\omega) \otimes X(\omega, t) + B(\omega) \otimes U(\omega, t)$ $Y(\omega, t) = C(\omega) \otimes X(\omega, t) + D(\omega) \otimes U(\omega, t)$	(5)			
Harmonic State Spa Model	ce $(s + jm\omega_0)X_n = \sum_{-\infty}^{\infty} A_{n-m}X_m + \sum_{-\infty}^{\infty} B_{n-m}U_m$ $Y_n = \sum_{-\infty}^{\infty} C_{n-m}X_m + \sum_{-\infty}^{\infty} D_{n-m}U_m$	(6)			
<i>(</i> 1)	sX = (A - N)X + BU Y = CX + DU	(7)			

□ Modeling Procedure of 3 phase Grid Connected Converters

• HSS – Basic Model design (Linear - RLC circuit)

• HSS – Basic Model design (Switching Component)

□ Modeling Procedure of 3 phase Grid Connected Converters

*Circuit diagram of the 3-phase grid connected converter with *LCL*-filter

*Block diagram of HSS modeling for 3-phase grid connected converter with *LCL*-filter

AALBORG UNIVERSITET

•

□ Modeling Procedure of 3 phase Grid Connected Converters

Switching Part

Filter part

0

$$sw(t) = [s_{ab}(t) \ s_{bc}(t) \ s_{ca}(t)]$$
 (10)

$$v_{inv}(t) = sw(t)^T [v_{dc}(t)]$$
(11)

$$i_{dc}(t) = sw(t)[i_{ga}(t) \quad i_{gb}(t) \quad i_{gc}(t)]^T$$
 (12)

$$C_{dc}\frac{dv_{dc}(t)}{dt} = i_{dc}(t)$$
(13)

$$v_{g-abc}(t) - v_{cap-abc}(t) = L_g \frac{di_{g-abc}(t)}{dt} + R_g i_{g-abc}(t)$$
 (14)

$$v_{cap-abc}(t) - v_{inv-abc}(t) = L_f \frac{di_{f-abc}(t)}{dt} + R_f i_{f-abc}(t)$$
 (15)

$$i_{g-abc}(t) - i_{f-abc}(t) = C_f \frac{dv_{cap-abc}(t)}{dt}$$
(16)

□ Modeling Procedure of 3 phase Grid Connected Converters

(18)

AALBORG UNIVERSITET

□ Harmonic Interaction Analysis

• Dynamic Harmonic interaction

$$H_{k}(s) = \sum_{l} \hat{C}_{k-l} \left((s+jl\omega_{0})I - \hat{A} \right)^{-1} \hat{B}_{l} + D_{k} \qquad (s \neq 0)$$

$$Y(s) = \sum_{k=-\infty}^{\infty} H_k(s - jk\omega_0)U(s - jk\omega_0)$$

where,

$$H(s) = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots \\ \dots & H_0(s - j\omega_0) & H_{-1}(s) & H_{-2}(s + j\omega_0) & \dots \\ \dots & H_1(s - j\omega_0) & H_0(s) & H_{-1}(s + j\omega_0) & \dots \\ \dots & H_2(s - j\omega_0) & H_1(s) & H_0(s + j\omega_0) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

APEC 2015-JUNBUM KWON 12 OF 19| 19.03.2015

□ Harmonic Interaction Analysis

• Steady-state Harmonic coupling

$$H_{k}(s) = \sum_{l} \hat{C}_{k-l} \left((s + jl\omega_{0})I - \hat{A} \right)^{-1} \hat{B}_{l} + D_{k} \qquad (s = 0)$$

Conventional approach

AALBORG UNIVERSITET

$$I_{th}(h) \approx rac{V_{th}(h)}{Z_{th}(h)}$$

Harmonic State Space approach

$$I_{th}(h) = \frac{V_{th}(h)}{Z_{th}(h)} + \frac{V_{th}(h)}{Z_{th}(h)} + \frac{V_{th}(h)}{Z_{th}(h)} + \frac{V_{th}(h)}{Z_{th}(h)} + \frac{V_{th}(h)}{Z_{th}(h)} \dots$$

APEC 2015-JUNBUM KWON 13 OF 19| 19.03.2015

□ Harmonic Interaction Analysis

• Time-domain simulation

□ Simulation and Experimental Verification

Main Parameters

Power rating	3 <i>kW</i>	
L _f	6.25 mH	
L _g	3.3 mH	
C _f	9.4 uF	
C _{dc}	1000 uF	
V _{dc}	750	
f _{sw}	2 kHz	
-hh	$-40^{th} \sim 40^{th}$	

Grid condition

Grid voltage (h)	Case A	Case B
2nd	-	0.2%
5th	4.5%	2.5%
7th	1.5%	4.5%

Simulation and Experimental Verification

*PLECS & HSS Simulation results

(a) Case-A (blue = grid side current, cyan=grid voltage, red = FFT waveform of grid side current)

* Grid side inductor current experiment waveform from distorted grid voltage

(b) Case-A (blue = grid side current, cyan=grid voltage, red = FFT waveform of grid side current)

□ Simulation and Experimental Verification

- Grid connected inverter model using HSS modeling is developed.
- By means of HSS modeling, the time varying elements of converters can be

considered and analyzed together in one domain.

- □ This model shows intuitively the harmonic coupling points of the models.
- □ The developed model will be combined with other converters for the analysis of harmonics in a large network.
- □ The non-linear passive components will be included in the model to analyze

the harmonics generated in the saturation.

Thank You! Questions?

" THE HIDDEN HARMONY IS BETTER THAN THE OBVIOUS "

- P. PICASSO

www.harmony.et.aau.dk